

Madrid, 1st of October, 2021

We hereby confirm that the following anchors in the mentioned sizes and types used according to the relevant assessment, are in full compliance with guideline

VdS CEA 4001:2021-01(07) *Guidelines for sprinklers systems. Planning and installation* for applications of water extinguising systems on concrete elements:

THE, TFE, TFN, THA, THP, THT, TFS, TFF screw anchor	8 to 18	ETA 20/0494
MTP, MTP-G, MTP-X, MTP-A4 wedge anchor	M8 to M20	ETA 12/0397
HEHO, HECLO, HEHC, HEA4 drop in anchor	M8 to M20	ETA 14/0068
SLPT, SLPC heavy duty anchor	M8 to M20	ETA 18/1108

LOPEZ HOMBRADOS CECILIO - 70159911K 2021.10.06 19:24:42 +02'00'

Cecilio López Hombrados Head of structural testing unit Instituto de Ciencias de la Contsrucción Eduardo Torroja. EOTA member Serrano Galvache 4 28033 Madrid. Spain

VdS rev2 01.10.2021

Certificate of Compliance

This certificate is issued for the following:

Pipe Hanger Components for Automatic Sprinkler Systems

Drop-in Anchor Models HE-HO and HE-CL

(see attached details)

Prepared for:

Técnicas Expansivas S.L. Polígono la Portalada II, C/ Segador 13 26006, Logroño, La Rioja Spain

FM Approvals Class: 1952 (December 2016)

Approval Identification: PR459590 Approval Granted: June 18, 2021

To verify the availability of the Approved product, please refer to www.approvalguide.com

Said Approval is subject to satisfactory field performance, continuing Surveillance Audits, and strict conformity to the constructions as shown in the Approval Guide, an online resource of FM Approvals.

David B. Fuller

VP, Manager – Fire Protection

FM Approvals

1151 Boston-Providence Turnpike

Norwood, MA 02062

Certificate of Compliance

	Hanger Rod Nominal Pipe Size					
Model No	Description	Size, in (mm)	in	(mm)	Remarks	
HE-HO	Drop-in Anchor	(10)	3/4 through 4	(20 through 100)	-	
НЕ-НО	Drop-in Anchor	(12)	5, 6, 8	(125, 150, 200)	-	
НЕ-НО	Drop-in Anchor	(16)	10, 12	(250, 300)	-	
HE-CL	Drop-in Anchor	(10)	3/4 through 4	(20 through 100)	-	
HE-CL	Drop-in Anchor	(12)	5, 6, 8	(125, 150, 200)	-	
HE-CL	Drop-in Anchor	(16)	10 ,12	(250, 300)	-	

Member of the FM Global Group

INSTITUT FÜR **BAUWISSENSCHAFTEN** EDUARDO TORROJA

direccion.ietcc@csic.es

C/ Serrano Galvache n. 4 28033 Madrid (Spanien)
Tel.: (34) 91 302 04 40 Fax: (34) 91 302 07 00 www.ietcc.csic.es

Europäische Technische **Bewertung**

ETA 14/0135 vom 10/06/2021

Allgemeiner Teil

Technische Prüfstelle, die die ETA (Europäische Technische Bewertung) gemäß Art. 29 der Verordnung (EU) 305/2011 ausstellt:

Institut für Bauwissenschaften Eduardo Torroja (IETcc)

Handelsbezeichnung des Bauprodukts:

Produktfamilie, zu der das Produkt gehört:

Einschlaganker Index HEHO / HECLO

Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung in ungerissenem Beton.

Hersteller:

Index - Técnicas Expansivas S.L. Segador 13 26006 Logroño (La Rioja) Spanien Website: www.indexfix.com

Herstellwerk(e):

Diese Europäische Technische Bewertung umfasst:

Diese Europäische Technische Bewertung wird ausgestellt in Übereinstimmung mit der Verordnung (EU) Nr. 305/2011, auf Grundlage von:

Diese Fassung ersetzt:

Werk Index 2

Seiten einschließlich 3 Anhänge, wesentlicher Bestandteil dieser Bewertung sind.

Europäisches

EAD 330232-00-0601 Bewertungsdokument "Metall-Dübel zur Verankerung im Beton", Ausg. Oktober 2016

ETA 12/0135, ausgestellt am 27/06/2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Art. 25 Abs. 3 der Verordnung (EU) Nr. 305/2011.

SPEZIFISCHER TEIL

1. Technische Beschreibung des Produkts

Die Dübel HEHO/HECLO von Index in den Größen M6 bis M20 sind Verankerungen aus verzinktem Stahl, die in ein Bohrloch eingeführt und durch kraftkontrollierte Spreizdehnung installiert werden. Die Verankerung erfolgt durch die Reibung zwischen Spreizhülse und Beton.

Das Produkt und die Produktbeschreibung entsprechen den Angaben in Anhang A.

2. Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument (EAD).

Die Leistungen in Abschnitt 3 gelten nur, wenn der Durchsteckanker entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Bestimmungen dieser europäischen technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer des Durchsteckankers von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3. Merkmale des Produkts und Nachweisverfahren.

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliche Merkmale	Eigenschaften
Charakteristische Widerstände für statische und quasi-	Siehe Anhänge C1 bis C3
statische Beanspruchungen	
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhänge C2 und C3

3.2 Brandschutz (BWR 2)

Wesentliche Merkmale	Eigenschaften
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1

4. Aufgrund der rechtlichen Grundlagen angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit des Produkts (AVCP).

Als europäische rechtliche Grundlage für das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (siehe Anhang V der Verordnung (EU) Nr. 305/2011) gilt 96/582/EG.

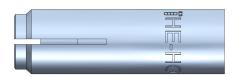
Folgendes System ist anzuwenden: 1.

5. Erforderliche technische Einzelheiten für die Durchführung des Systems AVCP gemäß anwendbarem EBD.

Die für die Durchführung des Systems AVCP notwendigen technischen Einzelheiten sind Bestandteil

des Prüfplans, der bei dem Institut für Bauwissenschaften Eduardo Torroja hinterlegt ist.

Institut für Bauwissenschaften Eduardo Torroja OBERSTER RAT FÜR WISSENSCHAFTLICHE FORSCHUNGEN


C/ Serrano Galvache n.º 4. 28033 Madrid, Spanien Tel.: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 www.ietcc.csic.es

Im Namen des Instituts für Bauwissenschaften Eduardo Torroja Madrid, 10 Juni 2021

Leiterin

Produkt

Dübel HEHO, HECLO

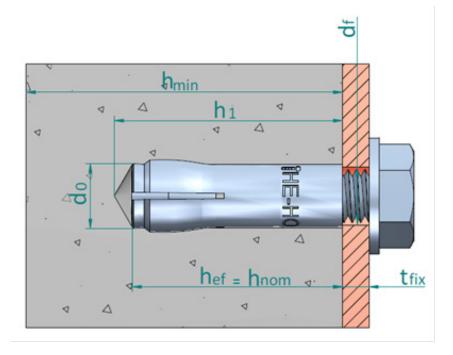

Dübel HEHO

Dübel HECLO

Identifikation an der Hülse: Index-Logo + "HEHO (HECLO)" + Größe; z. B.: HEHO M6

Abmessungen der Verank	kerung	M6	M8	M10	M12	M16	M20
ØD: Außendurchmesser	[mm]	8	10	12	15	20	25
Ød: Innendurchmesser	[mm]	M6	M8	M10	M12	M16	M20
L: Gesamtlänge	[mm]	25	30	40	50	65	80

Installationswerkzeug



Abmessungen des Installationswerkzeugs		М6	M8	M10	M12	M16	M20
Ø D ₁	[mm]	8.0	10.0	12.0	15.0	20.0	25.0
Ø D ₂	[mm]	4.9	6.4	8.2	10.0	13.5	17.0
Ls	[mm]	15.0	18.0	21.0	30.0	36.0	40.0

Das Installationswerkzeug kann mit einem Kunststoffgriff zum Schutz der Hand ausgestattet sein.

Dübel HEHO, HECLO	
Beschreibung des Produkts	Anhang A1
Produkt	

Schema des eingesetzten Dübels

hef: effektive Verankerungstiefe

h₁: Bohrlochtiefe

h_{nom}: Verankerungstiefe im Beton

h_{min}: Minimale Betondicke t_{fix}: Dicke des Anbauteils

d₀: Nenn-Bohrungsdurchmesser

d_f: Durchmesser des Durchgangslochs im Anbauteil

Tabelle A1: Werkstoffe

Pos.	Bezeichnung	Material des HEHO / HECLO
1	Hülse	Kohlenstoffstahldraht, verzinkt ≥ 5 μm ISO 4042 A2
2	Spreizkegel	Kohlenstoffstahldraht, verzinkt ≥ 5 μm ISO 4042 A2
3	Sicherungsscheibe	PVC

Dübel HEHO, HECLO	
Beschreibung des Produkts	Anhang A2
Installierter Zustand und Baustoffe	

Spezifizierung des Verwendungszwecks

Verankerung unter:

• statischen oder quasi-statischen Lasten.

Baustoff:

- Bewehrter oder unbewehrter Normalbeton keine Fasern nach EN 206:2013+ A1:2016
- Festigkeitsstufen: C20/25 bis C50/60 gemäß EN 206:2013+A1:2016
- Ungerissener Beton

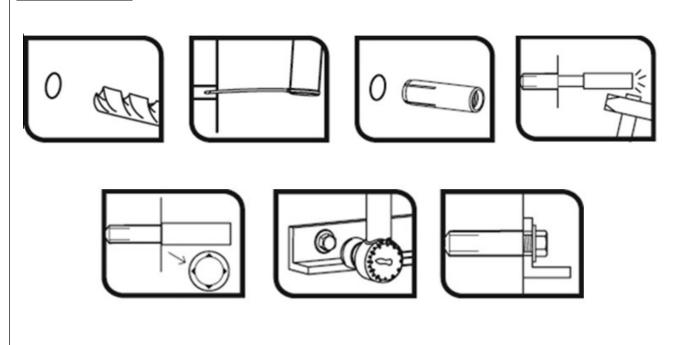
Nutzungsbedingungen (Umweltbedingungen):

• In Bauteilen in trockenen Innenräumen.

Bemessung:

- Die Bemessungen erfolgen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu befestigenden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Die Einbaulage wird in den Konstruktionszeichnungen angegeben (z.B.: Lage des Dübels zur Bewehrung oder zu Auflagen usw.).
- Die Bemessung unter statischer oder quasi-statischer Belastung erfolgt nach Bemessungsmethode A gemäß EN 1992-4:2018

Einbau:


- Bohrlocherstellung mittels Rotations-Hammerbohren.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt.
- Die zu verwendende Schraube oder Gewindebolzen hat die Festigkeitsklasse 4.6 / 5.6 / 5.8 / 6.8 oder 8.8 gemäß ISO 898-1.
- Die Schraubenlänge wird wie folgt bestimmt:
 - O Min. Schraubenlänge = t_{fix} + ℓ_{s min}
 - o Max. Schraubenlänge = $t_{fix} + \ell_{s max}$

Dübel HEHO, HECLO	
Verwendungszweck	Anhang B1
Spezifikationen	

Tabelle C1: Einbaukennwerte für Dübel HEHO / HECLO

Finha	Einbaukennwerte		Eigenschaften					
Einba			М6	M8	M10	M12	M16	M20
do	Nenn-Bohrungsdurchmesser:	[mm]	8	10	12	15	20	25
D	Gewindedurchmesser:	[mm]	M6	M8	M10	M12	M16	M20
d _f	Durchmesser des Durchgangslochs im Anbauteil ≤	[mm]	7	9	12	14	18	22
Tinst	Max. Einbaudrehmoment:	[Nm]	4	11	17	38	60	100
I _{s,min}	Min. Gewindelänge:	[mm]	6	8	10	12	16	20
I _{s,max}	Max. Gewindelänge:	[mm]	10	13	17	21	27	34
h _{min}	Minimale Betondicke:	[mm]	100	100	100	100	130	160
h ₁	Bohrungstiefe:	[mm]	27	33	43	54	70	86
h _{nom}	Verankerungstiefe im Beton:	[mm]	25	30	40	50	65	80
hef	Effektive Verankerungstiefe:	[mm]	25	30	40	50	65	80
Smin	Minimaler Achsabstand:	[mm]	60	60	80	100	130	160
Cmin	Minimaler Abstand zum Rand:	[mm]	105	105	140	175	230	280

Einbauverfahren

Dübel HEHO, HECLO	
Eigenschaften	Anhang C1
Einbaukennwerte und Einbauverfahren	

<u>Tabelle C2: Werte der charakteristischen Zugtragfähigkeit nach Bemessungsmethode A gemäß EN 1992-4 für Einschlaganker HEHO, HECLO</u>

Chara	ıkteristische Zugtragfähigke	it gemäß		Eigenschaften						
	ssungsmethode A	М6	М8	M10	M12	M16	M20			
Zugtra	agfähigkeit: Stahlversagen									
$N_{Rk,s}$	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass		[kN]	8,0	14,6	23,2	33,7	62,8	98,0	
γ _{Ms} 1)	Teilsicherheitsbeiwert:		[-]	2,0	2,0	2,0	2,0	2,0	2,0	
N _{Rk,s}	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass		[kN]	8,0	14,6	18,2	33,7	62,8	95,1	
γ _{Ms} 1)	Teilsicherheitsbeiwert:		[-]	1,5	1,5	1,5	1,5	1,5	1,5	
N _{Rk,s}	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass		[kN]	10,1	18,3	18,2	42,2	78,5	122,5	
γ _{Ms} 1)	Teilsicherheitsbeiwert:		[-]	2,0	2,0	1,5	2,0	2,0	2,0	
N _{Rk,s}	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass		[kN]	10,1	17,6	18,2	35,1	65,0	95,1	
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-	1,5	1,5	1,5	1,5	1,5	1,5		
N _{Rk,s}	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass		[kN]	12,1	17,6	18,2	35,1	65,0	95,1	
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
$N_{Rk,s}$	Charakteristische Tragfähigkeit unter Zugbeanspruchung Klass	[kN]	13,1	17,6	18	35,1	65,0	95,1		
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,5	1,5	1,5	1,5	1,5	1,5		
Zugtra	agfähigkeit: Versagen durch	Herausziehe	en (Beton)						
N _{Rk,p,}	Charakteristische Zugtragfähigk ungerissenem Beton C20/25:	eit in	[kN]	<u></u> 2)	2)	2)	2)	 2)	2)	
	.,	C30/37	[-]	1,02	1,22	1,15	1,15	1,22	1,19	
Ψc	Vergrößerungsfaktor für N ⁰ _{Rk,p} :	C40/50	[-]	1,04	1,41	1,29	1,28	1,41	1,35	
	IN-Rk,p.	C50/60	[-]	1,05	1,55	1,37	1,37	1,55	1,46	
γins	Sicherheitsbeiwert der Installation	on:	[-]	1,2	1,2	1,4	1,4	1,4	1,4	
Zugtra	agfähigkeit: Betonausbruch	oder Spalter								
h _{ef}	Effektive Verankerungstiefe:		[mm]	25	30	40	50	65	80	
k _{ucr,N}	Faktor für ungerissenen Betor		[-]	11,0						
γins	Sicherheitsbeiwert der Installa	ition:	[-]	1,2	1,2	1,4	1,4	1,4	1,4	
Scr,N	- Versagen durch Betonausbruch	:	[mm]	3 x h _{ef}						
C _{cr,N}			[mm]	1-0			x h _{ef}		100	
Scr,sp	Versagen durch Spalten (Beton):		[mm]	150	180	240	300	390	480	
C _{cr,sp}	C _{cr,sp}		[mm]	75	90	120	150	195	240	
Versc	hiebung unter Zuglast	D 1								
N	Zuglasteinwirkung in ungerisser C20/25 bis C50/60:		[kN]	2,4	3,4	6,0	7,4	17,8	18,2	
δνο	Kurzfristige Verschiebung unter Zuglasteinwirkung:		[mm]	0,1	0,1	0,1	0,1	0,1	0,1	
$\delta_{N^{\infty}}$	Langfristige Verschiebung unter Zuglasteinwirkung:		[mm]	0,3	0,3	0,3	0,3	0,3	0,3	

Dübel HEHO, HECLO	
Eigenschaften	Anhang C2
Werte der charakteristischen Zugtragfähigkeit	

¹⁾ In Ermangelung anderer nationaler Vorschriften ²⁾ Versagen durch Herausziehen nicht maßgebend

<u>Tabelle C3: Werte der charakteristischen Quertragfähigkeit nach Bemessungsmethode A gemäß EN 1992-4 für Einschlaganker HEHO, HECLO</u>

Chara	kteristische Quertragfähigkeit				Eigens	chaften		
	B Bemessungsmethode A		M6	M8	M10	M12	M16	M20
Querti	ragfähigkeit: Stahlversagen ohne Hebelarr	n						
$V_{Rk,s}$	Charakteristische Quertragfähigkeit des Stahls	[kN]	4,0	7.2	116	16,8	31,4	49,0
V Rk,s	unter Zugbeanspruchung Klasse 4.6:	[KIN]	4,0	7,3	11,6	10,0	·	49,0
γMs ¹⁾	Teilsicherheitsbeiwert:	-]	1,67	1,67	1,67	1,67	1,67	1,67
$V_{\text{Rk},\text{s}}$	Charakteristische Quertragfähigkeit des Stahls unter Zugbeanspruchung Klasse 4.8:	[kN]	4,0	7,3	9,1	16,8	31,4	47,5
γ _{Ms} ¹⁾	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$V_{Rk,s}$	Charakteristische Quertragfähigkeit des Stahls unter Zugbeanspruchung Klasse 5.6:	[kN]	5,0	9 1	9,1	21,1	39,2	61,2
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]	1,67	1,67	1,25	1,67	1,67	1,67
$V_{Rk,s}$	Charakteristische Quertragfähigkeit des Stahls unter Zugbeanspruchung Klasse 5.8:	[kN]	5,0	8,8	9,1	17,5	32,5	47,5
γ _{Ms} ¹⁾	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$V_{Rk,s}$	Charakteristische Quertragfähigkeit des Stahls unter Zugbeanspruchung Klasse 6.8:	[kN]	6,0	8,8	9,1	17,5	32,5	47,5
γ _{Ms} ¹⁾	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$V_{Rk,s}$	Charakteristische Quertragfähigkeit des Stahls unter Zugbeanspruchung Klasse 8.8:	[kN]	6,5	8,8	9,1	17,5	32,5	47,5
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
	ragfähigkeit: Stahlversagen mit Hebelarm		, -	, -	, -	, -	, -	, , -
M ⁰ Rk,s	Charakteristisches Biegemoment Stahl Klasse 4.6:	[Nm]	6,1	15,0	29,9	52,4	133,3	259,8
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,67	1,67	1,67	1,67	1,67	1,67
M ⁰ Rk,s	Charakteristisches Biegemoment Stahl Klasse 4.8:	[Nm]	6,1	15,0	29,9	52,4	133,3	259,8
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
M ⁰ _{Rk,s}	Charakteristisches Biegemoment Stahl Klasse 5.6:	[Nm]	7,6	18,8	37,4	65,5	166,6	324,8
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,67	1,67	1,67	1,67	1,67	1,67
M ⁰ _{Rk,s}	Charakteristisches Biegemoment Stahl Klasse 5.8:	[Nm]	7,6	18,8	37,4	65,5	166,6	324,8
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
M ⁰ Rk,s	Charakteristisches Biegemoment Stahl Klasse 6.8:	[Nm]	9,2	22,5	44,9	78,7	199,9	389,7
$\gamma \text{Ms}^{1)}$	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
M ⁰ Rk,s	Charakteristisches Biegemoment Stahl Klasse 8.8:	[Nm]	12,2	30,0	59,9	104,9	266,6	519,7
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]	1,25	1,25	1,25	1,5	1,25	1,25
Querti	agfähigkeit: Betonausbruch auf der lastal	ogewan	dten Se	ite			•	
k ₈	Faktor k:	[-]	1,0	1,0	1,0	1,0	2,0	2,0
γins	Sicherheitsbeiwert der Installation:	[-]			1	,0		•
	agfähigkeit: Betonkantenbruch							
lf	Effektive Verankerungstiefe unter Querbeanspruchung:	[mm]	25	30	40	50	65	80
d _{nom}	Außendurchmesser der Verankerung:	[mm]	8	10	12	15	20	25
γins	Sicherheitsbeiwert der Installation:				,0			
•	niebung unter Querlast	[-]	ı			•		
V	Querlasteinwirkung in ungerissenem Beton C20/25 bis C50/60:	[kN]	3,8	5,0	5,2	10,1	18,6	27,2
δ_{V0}	Kurzfristige Verschiebung unter Querlasteinwirkung:	[mm]	2,4	2,4	2,4	1,3	1,0	1,0
δ∨∞	Langfristige Verschiebung unter Querlasteinwirkung:	[mm]	3,5	3,5	3,5	2,0	1,5	1,5

¹⁾ In Ermangelung anderer nationaler Vorschriften

Dübel HEHO, HECLO	
Eigenschaften	Anhang C3
Werte der charakteristischen Quertragfähigkeit	

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 Tel.: (34) 91 302 04 40

28033 Madrid (Spanien) Fax: (34) 91 302 07 00

Europäische Technische Bewertung

ETA 14/0068 vom 19.10.2021

Deutsche Übersetzung von Técnicas Expansivas S. L. Die Originalversion ist in englischer Sprache verfasst

Allgemeiner Teil

Technische Prüfstelle, die die ETA (Europäische Technische Bewertung) nach Art. 29 der Verordnung (EU) 305/2011 ausstellt:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Handelsbezeichnung des Bauprodukts:

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4

Produktfamilie, zu der das Produkt gehört:

Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl oder rostfreiem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verwendung im Beton für redundante nichttragende Systeme.

Hersteller:

Index - Técnicas Expansivas S.L.

Segador 13,

26006 Logroño (La Rioja) Spanien.

Seiten einschließlich 3

Website: www.indexfix.com

Herstellwerk(e):

Index-Werk 2

2018.

Diese Europäische Technische Bewertung umfasst:

Diese Europäische Technische Bewertung wird ausgestellt in Übereinstimmung mit der Verordnung (EU) Nr. 305/2011, auf

der Grundlage von:

Europäisches Bewertungsdokument EAD 330747-00-0601 "Dübel zur Verwendung im Beton für

redundante nichttragende Systeme", Ausg. Mai

wesentlicher Bestandteil dieser Bewertung sind.

Anhänge.

die

Diese Fassung ersetzt:

ETA 14/0068, ausgestellt am 04.03.2021

Seite 2 der Europäischen Technischen Bewertung ETA 14/0068 vom 19.10.2021 Deutsche Übersetzung von Técnicas Expansivas S. L.

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Art. 3 Abs. 25 der Verordnung (EU) Nr. 305/2011.

SPEZIFISCHER TEIL

1. Technische Beschreibung des Produkts

Die Verankerung Index HEHO, HECLO, HEHC in den Größen M6 bis M20 ist ein Dübel aus galvanisch verzinktem Stahl. Die Verankerung Index HEA4, HEC4 in den Größen M6 bis M20 ist ein Dübel aus rostfreiem Stahl. Sie werden zur Montage in ein vorgebohrtes zylindrisches Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert. Die Verankerung erfolgt durch die Reibung zwischen Spreizhülse und Beton.

In Anhang A1 und A2 werden Produkt und Einbauzustand dargestellt.

2. Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument (EBD)

Die Leistungen in Abschnitt 3 gelten nur, wenn der Anker entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Bestimmungen dieser europäischen technischen Bewertung beruhen auf einer angenommenen Nutzungsdauer des Einschlagankers von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

3. Merkmale des Produkts und Nachweisverfahren

3.1 Brandschutz (BWR 2)

Wesentliche Merkmale	Eigenschaften
	Die Verankerungen erfüllen die
Brandverhalten	Anforderungen der Klasse A1 gemäß
	EN 13501-1
Feuerwiderstand	Siehe Anhang C7

3.2 Sicherheit bei der Nutzung (BWR 4)

Wesentliche Merkmale	Eigenschaften		
Charakteristische Tragfähigkeit ur	nter statischen	oder	Siehe Anhang C3 bis C6
quasi-statischen Lasten			-

4. Aufgrund der rechtlichen Grundlagen angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit des Produkts (AVCP)

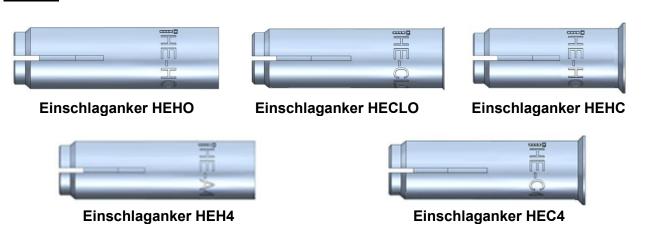
Als europäische rechtliche Grundlage für das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (siehe Anhang V der Verordnung (EU) Nr. 305/2011) gilt 97/161/EG.

Folgendes System ist anzuwenden: 2+.

5. Erforderliche technische Einzelheiten für die Durchführung des Systems AVCP gemäß anwendbarem EBD

Die für die Durchführung des Systems AVCP notwendigen technischen Einzelheiten sind Bestandteil des Prüfplans, der bei dem Institut für Bauwissenschaften Eduardo Torroja hinterlegt ist.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS



C/ Serrano Galvache n.º 4. 28033 Madrid, Spanien Tel.: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

Im Namen des Instituts für Bauwissenschaften Eduardo Torroja Madrid, 19. Oktober 2021

Leiter(in)

Produkt

Identifikation an der Hülse: Index-Logo + "HEHO (HECLO, HEHC, HEA4, HEC4)" + Größe; z. B.: ■HEHO M6

Tabelle A1: Abmessungen

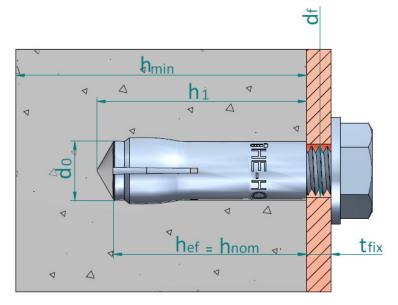

Abmessungen der Verankerung		М6	M8	M10	M12	M12D	M16	M20
HEHO, HECLO								
ØD: Außendurchmesser	[mm]	8	10	12	15	16	20	25
Ød: Innendurchmesser	[mm]	M6	M8	M10	M12	M12	M16	M20
L: Gesamtlänge	[mm]	25	30	40	50	50	65	80
HEHC								
ØD: Außendurchmesser	[mm]	-	10	12	15			-
Ød: Innendurchmesser	[mm]		M8	M10	M12			
L: Gesamtlänge	[mm]	-	25	25	25			
HEA4, HEC4								
ØD: Außendurchmesser	[mm]	8	10	12	15		20	25
Ød: Innendurchmesser	[mm]	M6	M8	M10	M12		M16	M20
L: Gesamtlänge	[mm]	25	30	40	50		65	80

Tabelle A2: Baustoffe

Pos.	Bezeichnung	Baustoffe für HEHO, HECLO, HEHC	Baustoffe für HEA4, HEC4
1	Hülse	Kohlenstoffstahl, verzinkt ≥ 5 μm ISO 4042 Zn5/An/T0	rostfreier Stahl, Klasse A4
2	Spreizhülse	Kohlenstoffstahl, verzinkt ≥ 5 μm ISO 4042 Zn5/An/T0	rostfreier Stahl, Klasse A4
3	Sicherungsring	Kunststoff	Kunststoff

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Produktbeschreibung	Anhang A1
Produkt und Baustoffe	

Einbauzustand in Beton

hef: effektive Verankerungstiefe

h₁: Bohrlochtiefe


h_{nom}: Verankerungstiefe im Beton

h_{min}: Min. Betondicke t_{fix}: Dicke des Anbauteils

d₀: Nenn-Bohrungsdurchmesser

df: Durchmesser des Durchgangslochs im Anbauteil

<u>Setzgerät</u>

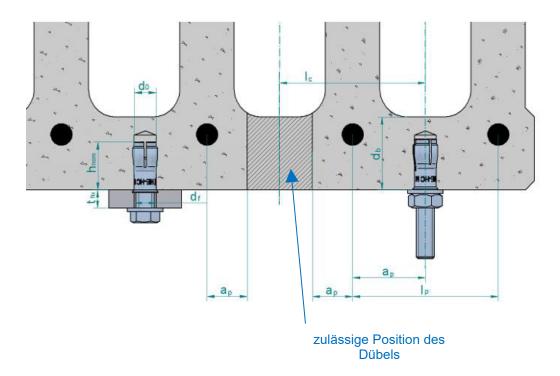

Das Installationswerkzeug kann mit einem Kunststoffgriff zum Schutz der Hand ausgestattet sein.

Tabelle A3: Abmessungen des Setzgeräts

Abmessungen des Setzger	räts	M6	M8	M10	M12	M16	M20	
HEHO, HECLO, HEA4, H	IEC4							
Ø D ₁ [n	nm]	8,0	10,0	12,0	15,0	20,0	25,0	
Ø D ₂ [n	nm]	4,9	6,4	8,2	10,0	13,5	17,0	
L _s [n	nm]	15,0	18,0	21,0	30,0	36,0	40,0	
HEHC	HEHC							
Ø D ₁ [n	nm]		10,0	12,0	15,0	ı		
$ \emptyset D_2 $ [n	nm]		6,4	8,2	10,0			
L _s [n	nm]		15,0	16,0	10,4			

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Produktbeschreibung	Anhang A2
Einbauzustand in Beton und Setzgerät	

Einbauzustand in vorgefertigten Spannbeton-Hohldecken

- d₀: Nenn-Bohrungsdurchmesser
- d_f: Durchmesser des Durchgangslochs im Anbauteil
- d_b: Bodenstärke der Spannbeton-Hohldecken
- a_p: Abstand zwischen der Dübelposition und der vorgespannten Bewehrung
- l_c: Abstand zwischen Hohlräumen ≥ 100 mm
- l_p: Abstand zwischen vorgespannten Bewehrungen ≥ 100 mm
- t_{fix}: Dicke des Anbauteils
- c: Randabstand

Einschlaganker HEHC	
Produktbeschreibung	Anhang A3
Einbauzustand in vorgefertigten Spannbeton-Hohldecken	

Spezifizierung des Verwendungszwecks

Verankerungen unter:

- statischen oder quasi-statischen Lasten: alle Größen und Einbautiefen
- Verwendung von Befestigungen mit Anforderungen in Bezug auf den Brandschutz (nicht für die Verwendung mit vorgefertigten Spannbeton-Hohldecke)
- Der Dübel kann nur verwendet werden, wenn in den Spezifikationen zur Berechnung und Installation des zu befestigenden Bauteils die übermäßige Verschiebung oder ein Versagen der Verankerungen nicht wesentlich gegen die Anforderungen an Beanspruchung und Endstatus verstößt.

Baustoffe:

- Bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206-1:2013+A1:2016.
- Festigkeitsklasse min. C12/15 und max. C50/60 entsprechend EN 206:2013 + A1:2016: Einschlaganker HEHO / HECLO.
- Festigkeitsklasse min. C20/25 und max. C50/60 entsprechend EN 206-1:2013+A1:2016: Einschlaganker HEHC / HEA4 / HEC4 .
- Gerissener oder ungerissener Beton.
- Vorgefertigte Spannbeton-Hohldecken, Festigkeitsklasse min. C30/37 und max. C50/60 entsprechend EN 206:2013: HEHC.

Nutzungsbedingungen (Umweltbedingungen):

- HEHO, HECLO, HEHC: Verankerungen unter trockenen Bedingungen in Innenräumen.
- HEA4, HEC4: Verankerungen unter trockenen Bedingungen in Innenräumen, im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen. Besonders aggressive Bedingungen sind z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Spritzwasserbereich von Seewasser, chlorhaltige Atmosphäre

in Schwimmbädern oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgasentschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden). Atmosphären unter Korrosionsbeständigkeitsklasse KBK III gemäß EN 1993-1-4:2006+A1:2015 Anhang A.

Bemessung:

- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu befestigenden Lasten werden prüfbare Berechnungen und Konstruktionszeichnungen angefertigt. Die Einbaulage wird in den Konstruktionszeichnungen angegeben (z. B.: Lage des Dübels zur Bewehrung oder zu Auflagen usw.).
- Die Bemessung von Verankerungen unter statischen oder quasi-statischen Lasten erfolgt nach Bemessungsmethode B gemäß: EN 1992-4:2018.
- Die Bemessung der Verankerungen unter Brandeinwirkung wird durchgeführt in Übereinstimmung mit: EN 1992-4:2018. Es muss sichergestellt werden, dass örtliches Abplatzen der Betondeckung nicht auftritt.

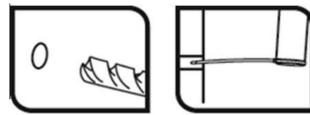
Einbau:

- Bohrlocherstellung mittels Rotations-Hammerbohren.
- Montage der Verankerung durch entsprechend geschultes Personal unter der Aufsicht der Person, die für die technischen Belange der Baustelle verantwortlich zeichnet.
- Im Falle einer Fehlbohrung: Ein neues Bohrloch muss in einem Mindestabstand der doppelten Tiefe der Fehlbohrung erstellt werden, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und nur, wenn die Fehlbohrung nicht in Richtung der Schräg- oder Querlast liegt.
- HEHO, HECLO, HEHC: Die zu verwendende Schraube oder Gewindebolzen hat die Festigkeitsklasse 4.6 / 5.6 / 5.8 / 6.8 oder 8.8 gemäß ISO 898-1.
- HEA4, HEC4: Die zu verwendende Schraube oder Gewindebolzen hat die Festigkeitsklasse A4-50, A4-70 oder A4-80 gemäß EN 3506-1:2009.
- Die Schraubenlänge wird wie folgt bestimmt: -Min. Schraubenlänge = $t_{fix} + \ell_{s,min}$ -Max. Schraubenlänge = $t_{fix} + \ell_{s,max}$

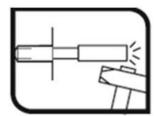
Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Verwendungszweck	Anhang B1
Spezifikationen	

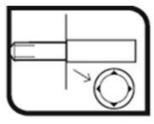
Tabelle C1: Einbaukennwerte für Dübel HEHO, HECLO, HEHC, HEA4, HEC4 im Beton

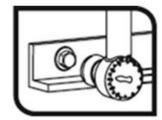
				Merkmale								
Monta	ngekennwerte		М6	M8	M10	M12	M12D	M16	M20			
d ₀	Nenn-Bohrungsdurchmesser:	[mm]	8	10	12	15	16	20	25			
D	Gewindedurchmesser:	[mm]	M6	M8	M10	M12	M12	M16	M20			
d _f	Durchmesser des Durchgangslochs im Anbauteil ≤	[mm]	7	9	12	14	14	18	22			
Tinst	Max. Einbaudrehmoment:	[Nm]	4	11	17	38	38	60	100			
НЕНО), HECLO		HEHOM06	HEHOM08 HECLOM08	HEHOM10 HECLOM10	HEHOM12 HECLOM12	HEHOM12D HECLOM12D	HEHOM16 HECLOM16	HEHOM20 HECLOM20			
ls,min	Min. Einschraubtiefe:	[mm]	6	8	10	12	12	16	20			
ls,max	Max. Einschraubtiefe:	[mm]	10	13	17	21	21	27	34			
h ₁	Bohrlochtiefe:	[mm]	27	33	43	54	54	70	86			
h _{nom}	Gesamt-Verankerungslänge:	[mm]	25	30	40	50	50	65	80			
h _{ef}	effektive Verankerungstiefe:	[mm]	25	30	40	50	50	65	80			
h _{min}	Min. Betondicke:	[mm]	100	100	100	100	100	130	160			
Smin	Minimaler Achsabstand:	[mm]	60	60	80	100	100	130	160			
Cmin	Min. Randabstand:	[mm]	105	105	140	175	130	230	280			
НЕНС			I	ненсм08	HEHCM10	HEHCM12	ŀ	I	-			
ℓs,min	Min. Einschraubtiefe:	[mm]		7	8	10						
ls,max	Max. Einschraubtiefe:	[mm]		12	13	13						
h ₁	Bohrlochtiefe:	[mm]		28	28	29						
h _{nom}	Gesamt-Verankerungslänge:	[mm]		25	25	25						
h _{ef}	effektive Verankerungstiefe:	[mm]		25	25	25						
h _{min}	Min. Betondicke:	[mm]		80	80	80						
Smin	Minimaler Achsabstand:	[mm]		75	75	75						
Cmin	Min. Randabstand:	[mm]		60	60	60						
HEA4, HEC4		HEA4M06 HEC4M06	HEA4M08 HEC4M08	HEA4M10 HEC4M10	HEA4M12 HEC4M12	I	HEA4M16 HEC4M16	HEA4M20 HEC4M20				
ls,min	Min. Einschraubtiefe:	[mm]	6	8	10	12		16	20			
ls,max	Max. Einschraubtiefe:	[mm]	10	13	17	21		27	34			
h ₁	Bohrlochtiefe:	[mm]	27	33	43	54		70	86			
h _{nom}	Gesamt-Verankerungslänge:	[mm]	25	30	40	50		65	80			
h _{ef}	effektive Verankerungstiefe:	[mm]	25	30	40	50		65	80			
h _{min}	Min. Betondicke:	[mm]	80	80	80	100		130	160			
Smin	Minimaler Achsabstand:	[mm]	60	60	100	100		130	160			
C _{min}	Min. Randabstand:	[mm]	65	80	100	130		175	210			


Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Eigenschaften	Anhang C1
Einbaukennwerte im Beton	

<u>Tabelle C2: Einbaukennwerte in vorgefertigten Spannbeton-Hohldecken für Einschlaganker HEHC</u>


Einbaukennwerte in vorgefertigten Spannbeton- Hohldecken			Eigenschaften							
HEHO	:		ı	HEHCM08	HEHCM10	HEHCM12	ı		:	
ls,min	Min. Einschraubtiefe:	[mm]		7	8	10				
ls,max	Max. Einschraubtiefe:	[mm]		12	13	13				
h ₁	Bohrlochtiefe:	[mm]	-	28	28	29				
h _{nom}	Gesamt-Verankerungslänge:	[mm]	-	25	25	25				
h _{ef}	effektive Verankerungstiefe:	[mm]	1	25	25	25				
dь	Min. Bodenstärke der Spannbeton- Hohldecken	[mm]	1	35	35	35				
Smin	Minimaler Achsabstand:	[mm]	1	200	200	200				
Cmin	Min. Randabstand:	[mm]	-	150	150	150				


Einschlaganker HEHC	
Eigenschaften	Anhang C2
Einbaukennwerte in vorgefertigten Spannbeton-Hohldecken	


Einbauverfahren

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4

Eingeschaften

Einbauverfahren

Anhang C3

<u>Tabelle C3: Charakteristische Tragfähigkeit im Beton gemäß Bemessungsmethode B in Übereinstimmung mit EN 1992-4 für Einschlaganker HEHO, HECLO, HEHC</u>

Chara	kteristische Tragfähigkeit im Beton		Eigenschaften							
	Bemessungsmethode B		M6	M8	M10	M12	M12D	M16	M20	
Last in	n jede Richtung									
HEHO,	HECLO									
F ⁰ Rk	Charakteristische Tragfähigkeit in Beton C12/15:	[kN]	1,5	3,0	4,0	6,0		9,0	16,0	
F ⁰ Rk	Charakteristische Tragfähigkeit in Beton C20/25 bis C50/60:	[kN]	2,0	3,0	5,0	7,5	6,0	12,0	20,0	
γins	Montagesicherheitsbeiwert:	[-]	1,2	1,2	1,4	1,4	1,4	1,4	1,4	
Scr	Kritischer Achsabstand:	[mm]	75	90	120	150	200	195	240	
Ccr	Kritischer Randabstand:	[mm]	40	45	60	75	150	100	120	
HEHC										
F ⁰ Rk	Charakteristische Tragfähigkeit in Beton C20/25 bis C50/60:	[kN]		2,5	4,0	4,0	I			
γins	Montagesicherheitsbeiwert:	[-]		1,2	1,2	1,2		-		
Scr	Kritischer Achsabstand:	[mm]		120	120	120	-	-		
Ccr	Kritischer Randabstand:	[mm]		60	60	60	-	-		
Querti	ragfähigkeit: Stahlversagen mit Hebe	elarm								
M ⁰ Rk,s	Charakteristisches Biegemoment, Stahlklasse 4.6	[Nm]	6,1	15,0	29,9	52,4	52,4	133,3	259,8	
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]				1,67				
$M^0_{\text{Rk,s}}$	Charakteristisches Biegemoment, Stahlklasse 4.8	[Nm]	6,1	15,0	29,9	52,4	52,4	133,3	259,8	
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]				1,25				
$M^0_{Rk,s}$	Charakteristisches Biegemoment, Stahlklasse 5.6	[Nm]	7,6	18,8	37,4	65,5	65,5	166,6	324,8	
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]				1,67				
$M^0_{\text{Rk,s}}$	Charakteristisches Biegemoment, Stahlklasse 5.8	[Nm]	7,6	18,8	37,4	65,5	65,5	166,6	324,8	
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]				1,25				
$M^0_{\text{Rk,s}}$	Charakteristisches Biegemoment, Stahlklasse 6.8	[Nm]	9,2	22,5	44,9	78,7	78,7	199,9	389,7	
γ _{Ms} ¹⁾	Teilsicherheitsbeiwert:	[-]				1,25				
$M^0_{\text{Rk,s}}$	Charakteristisches Biegemoment, Stahlklasse 8.8	[Nm]	12,2	30,0	59,9	104,9	104,9	266,6	519,7	
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]				1,25				
	Bei Fehlen anderer nationaler Regelungen		.,							

¹⁾ Bei Fehlen anderer nationaler Regelungen

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Eigenschaften	Anhang C4
Werte der charakteristischen Zug- und Quertragfähigkeit im Beton	

<u>Tabelle C4: Charakteristische Tragfähigkeit im Beton gemäß Bemessungsmethode B in Übereinstimmung mit EN 1992-4 für Einschlaganker HEA4, HEC4</u>

Charakteristische Tragfähigkeit im Beton gemäß		Eigenschaften						
Beme	Bemessungsmethode B			M8	M10	M12	M16	M20
Last in	n jede Richtung							
F ⁰ Rk	Charakteristische Tragfähigkeit in Beton C20/25 bis C50/60:	[kN]	2,5	3,5	3,5	6,5	12,5	16,5
γins	Montagesicherheitsbeiwert:	[-]			1,	,4		
Scr	Kritischer Achsabstand:	[mm]	200	200	200	200	260	320
Ccr	Kritischer Randabstand:	[mm]	150	150	150	150	195	240
Querti	ragfähigkeit: Stahlversagen mit Hebelarm							
M ⁰ Rk,s	Charakteristisches Biegemoment, Stahlklasse A4-50	[Nm]	7,6	18,8	37,4	65,6	166,6	324,8
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]			2,3	38		
M ⁰ Rk,s	Charakteristisches Biegemoment, Stahlklasse A4-70	[Nm]	10,6	6,3	52,4	91,8	233,1	454,7
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]	1,56					
$M^0_{Rk,s}$	Charakteristisches Biegemoment, Stahlklasse A4-80	[Nm]	12,2	30,0	59,9	104,9	266,6	519,7
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]			1,:	34		

¹⁾ Bei Fehlen anderer nationaler Regelungen

Einschlaganker HEA4, HEC4	
Eigenschaften	Anhang C5
Werte der charakteristischen Zug- und Quertragfähigkeit im Beton	

<u>Tabelle C5: Charakteristische Tragfähigkeit in vorgefertigten Spannbeton-Hohldecken gemäß</u> <u>Bemessungsmethode B in Übereinstimmung mit EN 1992-4 für Einschlaganker HEHC</u>

Charakteristische Tragfähigkeit im Beton			Eigenschaften							
gemäß	Bemessungsmethode B		M6	M8	M10	M12	M12D	M16	M20	
Last in	jede Richtung									
HEHC										
F ⁰ Rk	Charakteristische Tragfähigkeit in vorgefertigten Spannbeton-Hohldecken C30/37 bis C50/60:	[kN]		5,5	6,0	6,5	-			
γins	Montagesicherheitsbeiwert:	[-]		1,2	1,4	1,4				
Scr	Kritischer Achsabstand:	[mm]		200	200	200				
Ccr	Kritischer Randabstand:	[mm]		150	150	150				
Quertr	agfähigkeit: Stahlversagen mit Heb	elarm								
M ⁰ Rk,s	Charakteristisches Biegemoment, Stahlklasse 4.6	[Nm]		15,0	29,9	52,4				
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]			1,67					
$M^0_{Rk,s}$	Charakteristisches Biegemoment, Stahlklasse 4.8	[Nm]	-	15,0	29,9	52,4	I	-	1	
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]			1,25					
M^0 _{Rk,s}	Charakteristisches Biegemoment, Stahlklasse 5.6	[Nm]		18,8	37,4	65,5	1			
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]			1,67		-			
M^0 Rk,s	Charakteristisches Biegemoment, Stahlklasse 5.8	[Nm]		18,8	37,4	65,5				
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]			1,25		-			
M^0 _{Rk,s}	Charakteristisches Biegemoment, Stahlklasse 6.8	[Nm]	-	22,5	44,9	78,7	I	-	1	
γMs ¹⁾	Teilsicherheitsbeiwert:	[-]			1,25		-			
$M^0_{Rk,s}$	Charakteristisches Biegemoment, Stahlklasse 8.8	[Nm]		30,0	59,9	104,9	1			
γ _{Ms} 1)	Teilsicherheitsbeiwert:	[-]		-	1,25					

1) Bei Fehlen anderer nationaler Regelungen

Einschlaganker HEHC	
Eigenschaften	Anhang C6
Werte der charakteristischen Zug- und Quertragfähigkeit in vorgefertigten Spannbeton-Hohldecken	

<u>Tabelle C6: Charakteristische Feuerbeständigkeit in Beton C20/25 bis C50/60 für Last in jede</u> Richtung gemäß EN1992-4 für Einschlaganker HEHO, HECLO

Charakteristische Feuerbeständigkeit in Beton C20/25 bis C50/60 für Last in jede Richtung		Eigenschaften							
		М6	M8	M10	M12	M12D	M16	M20	
R30	Charakteristische Tragfähigkeit: F ⁰ Rk,fi30 ¹⁾	[kN]	0,2	0,4	0,9	1,7	1,7	3,1	4,9
R60	Charakteristische Tragfähigkeit: F ⁰ Rk,fi60 1)	[kN]	0,2	0,3	0,8	1,3	1,3	2,4	3,7
R90	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi90} 1)	[kN]	0,1	0,3	0,6	1,1	1,1	2,0	3,2
R120	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi120} 1)	[kN]	0,1	0,2	0,5	0,8	0,8	1,6	2,5
R30	Achsabstand	[mm]				4 x he	f		
bis R120	Randabstand	[mm]				2 x he	f		

¹) Bei Fehlen anderer nationaler Regelungen empfiehlt sich der Teilsicherheitsbeiwert für Lasten unter Brandbeanspruchung γ_{M,fi} =1,0 Bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: c ≥ 300 mm

<u>Tabelle C7: Charakteristische Feuerbeständigkeit in Beton C20/25 bis C50/60 für Last in jede Richtung gemäß EN1992-4 für Einschlaganker HEHC</u>

Charakteristische Feuerbeständigkeit in Beton C20/25 bis C50/60 für Last in jede Richtung		Eigenschaften						
		M6	М8	M10	M12	M16	M20	
R30	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi30} 1)	[kN]	-	0,54	0,54	0,54		
R60	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi60} ¹⁾	[kN]	-	0,54	0,54	0,54		
R90	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi90} 1)	[kN]	-	0,44	0,54	0,54		
R120	Charakteristische Tragfähigkeit: F ⁰ _{Rk,fi120} 1)	[kN]		0,37	0,43	0,43		
R30	Achsabstand	[mm]			4 x h _{ef-}			
bis R120	Randabstand	[mm]			2 x hef			

¹) Bei Fehlen anderer nationaler Regelungen empfiehlt sich der Teilsicherheitsbeiwert für Lasten unter Brandbeanspruchung γ_{M,fi} =1,0 Bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: c ≥ 300 mm

Tabelle C8: Charakteristische Feuerbeständigkeit in Beton C20/25 bis C50/60 für Last in jede Richtung gemäß EN1992-4 für Einschlaganker HEA4, HEC4

Charakteristische Feuerbeständigkeit in Beton			Eigenschaften					
C20/25 bis C50/60 für Last in jede Richtung		М6	М8	M10	M12	M16	M20	
R30	Charakteristische Tragfähigkeit: F ⁰ Rk,fi30 ¹⁾	[kN]	0,20	0,73	0,87	1,63	3,19	4,12
R60	Charakteristische Tragfähigkeit: F ⁰ Rk,fi60 ¹⁾	[kN]	0,18	0,59	0,87	1,63	3,19	4,12
R90	Charakteristische Tragfähigkeit: F ⁰ Rk,fi90 ¹⁾	[kN]	0,14	0,44	0,87	1,63	3,14	4,12
R120	Charakteristische Tragfähigkeit: F ⁰ Rk,fi120 1)	[kN]	0,10	0,37	0,69	1,30	2,51	3,30
R30	Achsabstand	[mm]			4 x	h _{ef}		
bis R120	Randabstand	[mm]			2 x	hef		

¹) Bei Fehlen anderer nationaler Regelungen empfiehlt sich der Teilsicherheitsbeiwert für Lasten unter Brandbeanspruchung γ_{M,fi} =1,0 Bei einseitiger Brandbeanspruchung muss der Abstand zwischen Verankerung und Rand wie folgt sein: c ≥ 300 mm

Einschlaganker HEHO, HECLO, HEHC, HEA4, HEC4	
Eigenschaften	Anhang C7
Wesentliche Merkmale unter Brandeinwirkung	